Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters

|  | $x$ | $y$ | $z$ | $B_{\text {eq }}\left(\AA^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| Pt | 0.0 | 0.54255 (9) | 0.35 | $2 \cdot 76$ (4) |
| $\mathrm{N}(1)$ | 0.0713 (8) | 0.414 (1) | $0 \cdot 360$ (7) | 2.4 (2) |
| C(1) | 0.140 (1) | 0.424 (2) | 0.375 (7) | $3 \cdot 6$ (5) |
| C(2) | 0.185 (1) | 0.329 (2) | 0.384 (5) | 3.9 (5) |
| C(3) | 0.156 (1) | 0.222 (2) | 0.365 (9) | $4 \cdot 0$ (5) |
| C(4) | 0.080 (1) | 0.212 (2) | 0.357 (9) | $3 \cdot 4$ (3) |
| C(5) | 0.039 (1) | 0.310 (2) | $0 \cdot 350$ (8) | $3 \cdot 1$ (3) |
| C(6) | 0.202 (1) | 0.117 (2) | 0.387 (6) | $4 \cdot 3$ (6) |
| $\mathrm{N}(2)$ | 0.074 (1) | 0.658 (2) | $0 \cdot 37$ (1) | $5 \cdot 3$ (6) |
| C(7) | 0.100 (1) | 0.751 (2) | 0.377 (4) | $2 \cdot 7$ (5) |
| 0 | 0.131 (1) | 0.842 (2) | $0 \cdot 381$ (7) | 6.9 (6) |



Fig. 1. View of the title compound showing the atom-numbering scheme. The two pseudohalide ligands and the bpy rings are related by a mirror plane.
reported for (1). This distance is comparable to that reported in a number of non-conducting platinum pseudohalide complexes in which the metal atom is exclusively in the divalent state (Williams, 1983).
The infrared, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, and UV-VIS spectroscopies of the title compound are not otherwise remarkable, and will be published elsewhere (Coyer \& Herber, 1991).

Table 2. Selected bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$

| $\mathrm{Pt}-\mathrm{N}(1)$ | 2.03 (1) | $\mathrm{C}(3)-\mathrm{C}(4)$ | 1.43 (3) |
| :---: | :---: | :---: | :---: |
| $\mathrm{Pt}-\mathrm{N}(2)$ | 1.96 (2) | C(3)-C(6) | 1.53 (4) |
| $\mathrm{N}(1)-\mathrm{C}(1)$ | 1.29 (3) | $\mathrm{C}(4)-\mathrm{C}(5)$ | 1.39 (3) |
| $\mathrm{N}(1)-\mathrm{C}(5)$ | 1.39 (3) | $\mathrm{C}(5)-\mathrm{C}\left(5^{\prime}\right)$ | 1.47 (3) |
| $\mathrm{N}(1)-\mathrm{C}(2)$ | $1 \cdot 41$ (3) | $\mathrm{N}(2)-\mathrm{C}(7)$ | $1 \cdot 21$ (3) |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | $1 \cdot 38$ (3) | $\mathrm{C}(7)-\mathrm{O}$ | $1 \cdot 22$ (3) |
| $\mathrm{N}(1)-\mathrm{Pt}-\mathrm{N}(2)$ | $93 \cdot 4$ (8) | $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | 118 (2) |
| $\mathrm{N}(1)-\mathrm{Pt}-\mathrm{N}\left(1^{\prime}\right)$ | $82 \cdot 3$ (6) | $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6)$ | 122 (2) |
| $\mathrm{N}(1)-\mathrm{Pt}-\mathrm{N}\left(2^{\prime}\right)$ | 173 (2) | $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(6)$ | 119 (2) |
| $\mathrm{N}(2)-\mathrm{Pt}-\mathrm{N}\left(2^{\prime}\right)$ | 90 (1) | $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | 118 (2) |
| $\mathrm{Pt}-\mathrm{N}(1)-\mathrm{C}(1)$ | 126 (1) | $\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$ | 121 (2) |
| $\mathrm{Pt}-\mathrm{N}(1)-\mathrm{C}(5)$ | 113 (1) | $\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}\left(5^{\prime}\right)$ | 116 (2) |
| $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)$ | 121 (2) | $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}\left(5^{\prime}\right)$ | 123 (2) |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | 122 (2) | $\mathrm{Pt}-\mathrm{N}(2)-\mathrm{C}(7)$ | 159 (2) |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | 120 (2) | $\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{O}$ | 176 (2) |

We thank the National Institutes of Health for an instrumentation grant (grant 87-0208), and the US Israel Binational Science Foundation for support.

## References

Bielli, E., Gidney, P. M., Gillard, R. D. \& Heaton, B. T. (1974). J. Chem. Soc. Dalton Trans. pp. 2133-2139.

Che, C.-M., He, L.-Y., Poon, C.-K. \& Mak, T. C. W. (1989). Inorg. Chem. 28, 3081-3083.
Coyer, M. \& Herber, R. H. (1991). In preparation.
Coyer, M., Herber, R. H. \& Cohen, S. (1990). Inorg. Chim. Acta, 175, 47-55.
Martin, D. S., Jacobson, R. A., Hunter, L. D. \& Benson, J. E. (1970). Inorg. Chem. 9, 1276-1278.

Rosenblatt, F. \& Schleede, A. (1933). Chem. Ber. 66, 472-477.
Schilt, A. A. (1962). J. Am. Chem. Soc. 82, 5779-5783
Schlet, A. A. (1963). J. Am. Chem. Soc. 85, 904-908.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1985). SHELXS86. In Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford Univ. Press.

Textor, M. \& Oswald, H. R. (1974). Z. Anorg. Allg. Chem. 407, 244-256.
Williams, J. M. (1983). Adv. Inorg. Chem. Radiochem. 26, 235-268.

Acta Cryst. (1991). C47, 1378-1383

# Crystal Structures of Bis(di-2-pyridylamine)(acetato)copper(II) Nitrate and Bis(di-2-pyridylamine)(formato)copper(II) Tetrafluoroborate 

By Sujittra Aduldecha, Mary E. Keniry, Pervaiz Akhter, Suresh Tyagi and Brian J. Hathaway* The Chemistry Department, University College, Cork, Ireland

(Received 8 May 1990; accepted 17 December 1990)


#### Abstract

Bis(di-2-bipyridylamine)(acetato)copper(II) nitrate, $\left[\mathrm{Cu}\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)\right]\left[\mathrm{NO}_{3}\right], \quad(\mathrm{I}), \quad M_{r}=$


[^0]0108-2701/91/071378-06\$03.00
526.89, and bis(di-2-bipyridylamine)(formato)copper(II) tetrafluoroborate, $\quad\left[\mathrm{Cu}\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)_{2}-\right.$ $\left.\left(\mathrm{CHO}_{2}\right)\right]\left[\mathrm{BF}_{4}\right]$, (II), $M_{r}=537 \cdot 64$, both crystallize in the monoclinic space group $P 2_{1} / c$. (I), $a=13 \cdot 216$ (3),
© 1991 International Union of Crystallography
$b=8.068$ (2), $c=22.161$ (4) $\AA, \quad \beta=92.01$ (3) ${ }^{\circ}, V=$ $2361 \cdot 50 \AA^{3}, \quad Z=4, \quad D_{m}$ (flotation) $=1.50$ (1),$\quad D_{x}=$ $1.48 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71069 \AA, \quad \mu=$ $0.926 \mathrm{~mm}^{-1}, T=298 \mathrm{~K}, \quad F(000)=1084, \quad R=0.048$ for 1887 observed reflections. (II), $a=13.571$ (2), $b$ $=7.687(1), \quad c=22.362$ (3) $\AA, \quad \beta=94.99(2)^{\circ}, \quad V=$ $2323.97 \AA^{3}, \quad Z=4, \quad D_{m}$ (flotation) $=1.52(1), \quad D_{x}=$ $1.54 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71069 \AA, \quad \mu=$ $0.960 \mathrm{~mm}^{-1}, T=298, F(000)=1092, R=0.051$ for 1660 observed reflections. Both structures involve a cis-octahedral $\mathrm{CuN}_{4} \mathrm{O}_{2}$ chromophore, but with very asymmetrically coordinated $\mathrm{O} X \mathrm{O}$ groups, $\Delta \mathrm{O}=$ $\{[\mathrm{Cu}-\mathrm{O}(2)]-[\mathrm{Cu}-\mathrm{O}(1)]\}=0.643$ (8) and 0.873 (4) $\AA$, for (I) and (II), respectively. Both structures are best described as involving a squarepyramidal cis-distorted octahedral ( $4+1+1^{*}$ ) $\mathrm{CuN}_{4} \mathrm{OO}^{\prime}$ chromophore, but with significantly different angular distortions.

Introduction. The crystal structures of the [ $\mathrm{Cu}^{\mathrm{II}-}$ $\left.(\text { chelate })_{2}(\mathrm{OXO})\right]^{+}$cation, where chelate $=$di-2bipyridyl (bpy) and 1,10-o-phenanthroline (phen) and $\mathrm{OXO}=[\mathrm{ONO}]^{-},\left[\mathrm{CH}_{3} \mathrm{CO}_{2}\right]^{-}$or $\left[\mathrm{HCO}_{2}\right]^{-}$are well characterized (Hathaway, 1984), as fluxional copper(II) stereochemistries (Procter, Hathaway, Billing, Dudley \& Nicholls, 1969; Harrison, Hathaway \& Kennedy, 1979; Fitzgerald, Murphy, Tyagi, Walsh, Walsh \& Hathaway, 1981; Simmons, Hathaway, Amornjarusiri, Santar-Siero \& Clearfield, 1987). In order to extend this series to more flexible chelate nitrogen ligands, complexes with the ligand di-2-pyridylamine (dpyam) have been examined, and the structures of (I) and (II) are reported.

Experimental. The complex $\left[\mathrm{Cu}(\mathrm{dpyam})_{2}-\right.$ $\left.\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)\right]\left[\mathrm{NO}_{3}\right]$ (I) was prepared by adding a boiling solution containing $0.48 \mathrm{~g} \quad(2.0 \mathrm{mmol})$ $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in 60 ml water, to a warm solution of 0.07 g ( 4.0 mmol ) dpyam in 30 ml ethanol, then $0.33 \mathrm{~g} 4.0 \mathrm{mmol}) \mathrm{CH}_{3} \mathrm{COONa}$ was added. After a few days, green crystals of (I) were formed. (I), found: C, $49.18 ; \mathrm{H}, 3.92 ; \mathrm{N}, 18.34 ; \mathrm{Cu}, 11.74 \%$ : calculated for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{CuN}_{7} \mathrm{O}_{5}: \mathrm{C}, 50 \cdot 13 ; \mathrm{H}, 3.99$; $\mathrm{N}, 18 \cdot 61 ; \mathrm{Cu}, 12.07 \%$. For the complex $[\mathrm{Cu}-$ (dpyam) $\left.)_{2}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]\left[\mathrm{BF}_{4}\right]$ (II), a hot solution containing 0.548 g ( 3.2 mmol ) of dpyam in 30 ml ethanol was added to a boiling solution containing 0.332 g of $\mathrm{Cu}\left(\mathrm{O}_{2} \mathrm{CH}\right)_{2} .3 \mathrm{H}_{2} \mathrm{O}(1.6 \mathrm{mmol})$ in 20 ml water, an excess of $\mathrm{NaBF}_{4}(0.22 \mathrm{~g}, 2.0 \mathrm{mmol})$ was then added and the solution was heated to boiling. After a few days, dark green crystals of (II) were formed. (II), found: $\mathrm{C}, 47 \cdot 34 ; \mathrm{H}, 3.69 ; \mathrm{N}, 15 \cdot 88 ; \mathrm{Cu}, 11 \cdot 46 \%$; calculated for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{BCuF}_{4} \mathrm{~N}_{6} \mathrm{O}_{2}$ : C, $46 \cdot 90 ; \mathrm{H}, 3 \cdot 57$; N, $15 \cdot 63$; Cu, $11.81 \%$.
Details of the structure refinement of (I) and (II) are summarized in Table 1. For both complexes the unit-cell and space-group data were determined and

Table 1. Refinement data

| Compound | (I) | (II) |
| :---: | :---: | :---: |
| Molecular formula | $\left[\mathrm{Cu}(\mathrm{dpyam})_{2-}\right.$ | $\left[\mathrm{Cu}(\mathrm{dpyam})_{2-}\right.$ |
|  | $\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right) \mathrm{H}\left[\mathrm{NO}_{3}\right]$ | $\left.\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]\left[\mathrm{BF}_{4}\right]$ |
| Measured reflections | 1953 | 1826 |
| Unique reflections used ( $N$ ) | 1887 | 1660 |
| Number of parameters ( $N P$ ) | 316 | 316 |
| $N / N P$ | 5.97 | $5 \cdot 25$ |
| Final weighting: $k, g^{*}$ | $0.8084,0.002226$ | 1.0363, 0.000640 |
| $R$ | 0.048 | 0.051 |
| $w R$ | 0.052 | 0.053 |
| Max. final shift/e.s.d | 0.001 | 0.001 |
| Max. and min. residual electron density (e $\AA^{-3}$ ) | $0.44,-0.42$ | 0.58, -0.39 |
| $*_{w}=k\left[\sigma^{2}\left(F_{o}\right)+g\left(F_{o}\right)^{2}\right]^{-1}$. |  |  |

refined on a Philips PW1100 four-circle diffractometer ( 25 reflections, $\theta 3-25^{\circ}$ ). The intensity data were collected using graphite-monochromatized Mo $K \alpha$ radiation, using a $\theta-2 \theta$ scan mode and reflections with $3.0<\theta<25^{\circ}$ in one quadrant were examined. A constant scan speed of $0.05^{\circ} \mathrm{s}^{-1}$ and a variable scan width of $(0.7+0 \cdot 1 \tan \theta)^{\circ}$ was used. With an acceptance criterion of $I>2 \cdot 5 \sigma(I)$; for (I), 1953 observed reflections, 1887 unique, with $h,-15-15$, $k, 0-9, l, 0-24$ and for (II), 1826 observed reflections, 1660 unique, with $h,-17-17, k, 0-8, l, 0-26$. Lorentz and polarization corrections were applied, but no correction was made for absorption. The structures were solved using three-dimensional Patterson and Fourier-synthesis techniques, SHELX76 and SHELXS86 (Sheldrick, 1976, 1986) and refined by full-matrix least-squares minimization of $\sum w\left(\left|F_{o}\right|-\right.$ $\left.\left|F_{c}\right|\right)^{2}$. Anisotropic temperature factors were refined for all the non-H atoms. Calculated H positions were used with fixed $\mathrm{C}-\mathrm{H}$ bond lengths of $1.08 \AA$ and a fixed $U_{\text {iso }}$ of $0.07 \AA^{2} ; \mathrm{H}$ atoms riding on the associated C or N atom. Complex neutral-atom scattering factors embedded in SHELX 76 were employed and those for copper were taken from Cromer \& Waber (1974). Calculations were carried out using SHELX 76 (Sheldrick, 1976), SHELXS86 (Sheldrick, 1986), XANADU (Roberts \& Sheldrick, 1979), CHEM-X (Davies, 1980), ORTEP (Johnson, 1971) and PUBTAB (Henrick, 1980) on the UCC mainframe IBM 4341 and VAX 11/780 computers. The final atomic coordinates with e.s.d.'s are given in Table 2.* Selected bond lengths and angles are given in Table 3. Figs. 1 and 2 illustrate the molecular structures and atom-numbering schemes for (I) and (II), respectively.

[^1]Table 2. Fractional atomic coordinates and isotropic thermal parameters $\left(\AA^{2}\right)$ with e.s.d.'s in parentheses

| $U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $x$ | $y$ | $z$ | $U_{\text {eq }}\left(\AA^{2}\right)$ |
| (I) |  |  |  |  |
| Cu | $0 \cdot 17514$ (6) | $0 \cdot 52940$ (11) | 0.62799 (4) | 0.0363 (5) |
| $\mathrm{N}(1)$ | 0.0419 (4) | 0.6492 (7) | 0.6305 (2) | 0.050 (3) |
| C(1) | -0.0164 (6) | 0.6500 (9) | 0.5790 (3) | 0.058 (5) |
| C(2) | -0.1176 (6) | 0.6918 (10) | 0.5778 (4) | 0.067 (5) |
| C(3) | -0.1602 (6) | 0.7344 (11) | 0.6316 (4) | 0.076 (6) |
| C(4) | -0.1021 (6) | 0.7330 (10) | 0.6854 (4) | 0.070 (5) |
| C(5) | 0.0005 (5) | 0.6905 (9) | 0.6823 (3) | 0.056 (5) |
| N(3) | 0.0578 (4) | $0 \cdot 6968$ (8) | 0.7364 (2) | 0.061 (4) |
| C(6) | $0 \cdot 1627$ (6) | 0.7193 (9) | 0.7432 (3) | 0.058 (5) |
| C(7) | $0 \cdot 1982$ (7) | 0.8005 (11) | 0.7948 (3) | 0.075 (6) |
| C (8) | 0.2993 (7) | 0.8278 (11) | $0 \cdot 8018$ (4) | 0.079 (6) |
| C(9) | 0.3638 (6) | 0.7793 (10) | 0.7569 (4) | 0.072 (6) |
| C(10) | 0.3246 (5) | 0.7005 (9) | $0 \cdot 7078$ (3) | 0.061 (5) |
| N(2) | 0.2235 (4) | $0 \cdot 6652$ (8) | $0 \cdot 7010$ (2) | 0.058 (4) |
| N(4) | $0 \cdot 2984$ (4) | 0.3839 (8) | 0.6298 (2) | 0.054 (4) |
| C(11) | 0.3199 (6) | $0 \cdot 2957$ (11) | 0.6808 (4) | 0.068 (5) |
| C(12) | 0.3851 (7) | 0.1683 (11) | 0.6836 (4) | 0.077 (6) |
| C(13) | 0.4307 (7) | $0 \cdot 1214$ (12) | 0.6309 (5) | 0.084 (7) |
| C(14) | 0.4117 (6) | 0.2078 (11) | 0.5782 (4) | 0.073 (6) |
| C(15) | 0.3455 (5) | 0.3434 (9) | 0.5794 (3) | 0.050 (4) |
| N(6) | $0 \cdot 3320$ (4) | 0.4310 (8) | 0.5259 (3) | 0.060 (4) |
| C(16) | $0 \cdot 3053$ (5) | 0.5951 (10) | $0 \cdot 5190$ (3) | 0.054 (5) |
| C(17) | $0 \cdot 3398$ (6) | 0.6805 (13) | 0.4695 (3) | 0.076 (6) |
| $\mathrm{C}(18)$ | 0.3155 (7) | 0.8438 (15) | 0.4610 (4) | 0.088 (7) |
| C(19) | $0 \cdot 2567$ (7) | 0.9263 (11) | $0 \cdot 5026$ (4) | 0.080 (6) |
| C(20) | 0.2239 (6) | 0.8353 (11) | $0 \cdot 5504$ (4) | 0.070 (6) |
| N(5) | $0 \cdot 2452$ (4) | $0 \cdot 6719$ (8) | $0 \cdot 5581$ (2) | 0.058 (4) |
| $\mathrm{O}(1)$ | $0 \cdot 1067$ (3) | $0 \cdot 3507$ (6) | 0.5767 (2) | 0.057 (3) |
| $\mathrm{O}(2)$ | 0.0604 (4) | $0 \cdot 2828$ (7) | $0 \cdot 6681$ (2) | 0.077 (4) |
| C(21) | 0.0583 (5) | 0.2596 (9) | 0.6130 (3) | 0.056 (5) |
| C(22) | -0.0065 (3) | $0 \cdot 1224$ (5) | $0 \cdot 5848$ (2) | 0.092 (7) |
| N (7) | 0.4360 (3) | $0 \cdot 2921$ (5) | $0 \cdot 3817$ (2) | 0.052 (4) |
| $\mathrm{O}(3)$ | 0.3983 (3) | $0 \cdot 2283$ (5) | $0 \cdot 4255$ (2) | $0 \cdot 130$ (6) |
| $\mathrm{O}(4)$ | 0.4787 (3) | 0.4227 (5) | $0 \cdot 3839$ (2) | 0.184 (9) |
| $\mathrm{O}(5)$ | 0.4219 (3) | $0 \cdot 2224$ (5) | $0 \cdot 3334$ (2) | $0 \cdot 136$ (6) |
| (II) |  |  |  |  |
| Cu | -0.15265 (7) | 0.00348 (18) | -0.12624 (4) | 0.0377 (5) |
| N (1) | -0.0244 (5) | $0 \cdot 1148$ (10) | -0.1421 (3) | 0.039 (4) |
| C(1) | 0.0442 (7) | 0.1351 (12) | -0.0961 (4) | 0.049 (6) |
| C (2) | 0.1411 (7) | $0 \cdot 1770$ (13) | -0.1017 (5) | 0.057 (7) |
| C(3) | $0 \cdot 1690$ (8) | 0.1896 (16) | -0.1599 (5) | 0.072 (8) |
| C(4) | $0 \cdot 1021$ (7) | $0 \cdot 1683$ (15) | -0.2090 (5) | 0.066 (7) |
| C(5) | 0.0034 (6) | 0.1344 (12) | -0.1975 (4) | 0.043 (6) |
| N(3) | -0.0642 (5) | 0.1197 (10) | -0.2479 (3) | 0.045 (5) |
| C(6) | -0.1646 (6) | 0.1449 (12) | -0.2505 (4) | 0.041 (6) |
| C(7) | -0.2127 (7) | $0 \cdot 2023$ (14) | -0.3055 (4) | 0.059 (7) |
| C(8) | -0.3121 (8) | 0.2342 (16) | -0.3073 (5) | 0.075 (8) |
| C(9) | -0.3629 (7) | 0.2126 (15) | -0.2574 (4) | 0.063 (7) |
| C(10) | -0.3116 (7) | $0 \cdot 1532$ (12) | -0.2069 (4) | 0.048 (6) |
| N(2) | -0.2134 (5) | 0.1155 (10) | -0.2025 (3) | 0.041 (4) |
| N(4) | -0.2743 (5) | -0.1424 (10) | -0.1185 (3) | 0.045 (5) |
| C(11) | -0.3007 (8) | -0.2578 (15) | -0.1636 (5) | 0.064 (7) |
| C(12) | -0.3748 (9) | -0.3759 (15) | -0.1604 (6) | 0.077 (9) |
| C(13) | -0.4258 (8) | -0.3772 (16) | -0.1105 (7) | 0.081 (9) |
| C(14) | -0.4024 (7) | -0.2627 (15) | -0.0642 (5) | 0.065 (7) |
| C(15) | -0.3245 (6) | -0.1432 (13) | -0.0703 (5) | 0.044 (6) |
| N(6) | -0.3052 (5) | -0.0291 (10) | -0.0226 (3) | 0.045 (5) |
| C(16) | -0.2662 (7) | 0.1342 (13) | -0.0221 (4) | $\overline{0} .038$ (6) |
| C(17) | -0.2916 (7) | 0.2475 (15) | 0.0231 (4) | 0.057 (7) |
| C(18) | -0.2537 (7) | 0.4160 (15) | $0 \cdot 0250$ (4) | 0.058 (7) |
| C(19) | -0.1919 (7) | 0.4668 (12) | -0.0180 (4) | 0.051 (7) |
| C(20) | -0.1703 (7) | 0.3487 (13) | -0.0604 (5) | 0.053 (7) |
| N(5) | -0.2044 (5) | 0.1851 (10) | -0.0620 (3) | 0.040 (4) |
| $\mathrm{O}(1)$ | -0.0779 (4) | -0.1585 (8) | -0.0686 (2) | 0.043 (4) |
| C(21) | -0.0301 (7) | -0.2722 (14) | -0.0949 (5) | 0.050 (7) |
| O(2) | -0.0341 (5) | -0.2945 (10) | -0.1501 (3) | 0.071 (5) |
| B(1) | -0.4472 (10) | -0.3245 (19) | -0.3835 (7) | 0.064 (9) |
| F(1) | -0.5395 (5) | -0.2945 (9) | -0.4024 (4) | $0 \cdot 106$ (6) |
| $F(2)$ | -0.4043 (7) | -0.4543 (11) | -0.4129 (4) | $0 \cdot 150$ (8) |
| F(3) | -0.3917 (5) | -0.1867 (11) | -0.3958 (5) | 0.164 (8) |
| $F(4)$ | -0.4357 (7) | -0.3589 (18) | -0.3277 (4) | 0.199 (11) |

Table 3. Selected bond lengths ( $\AA$ ) and bond angles ( ${ }^{\circ}$ ) with e.s.d.'s in parentheses

|  | (I) | (II) |
| :---: | :---: | :---: |
| (a) Bond lengths |  |  |
| $\mathrm{Cu}-\mathrm{N}(1)$ | 2.011 (5) | 1.999 (7) |
| $\mathrm{Cu}-\mathrm{N}(2)$ | 2.037 (6) | 2.021 (7) |
| $\mathrm{Cu}-\mathrm{N}(4)$ | 2.007 (6) | 2.015 (7) |
| $\mathrm{Cu}-\mathrm{N}(5)$ | $2 \cdot 162$ (6) | $2 \cdot 164$ (7) |
| $\mathrm{Cu}-\mathrm{O}(1)$ | 2.030 (5) | 2.003 (6) |
| $\mathrm{Cu}-\mathrm{O}(2)$ | 2.673 (5) | 2.876 (7) |
| $\mathrm{O}(1)-\mathrm{C}(21)$ | 1.278 (8) | 1.263 (10) |
| $\mathrm{O}(2)-\mathrm{C}(21)$ | 1.236 (8) | $1 \cdot 243$ (11) |
| $\mathrm{N}(7)-\mathrm{O}(3)$ | 1.220 (1) |  |
| $\mathrm{N}(7)-\mathrm{O}(4)$ | $1 \cdot 195$ (1) |  |
| $\mathrm{N}(7)-\mathrm{O}(5)$ | 1.218 (1) |  |
| $\mathrm{B}(1)-\mathrm{F}(1)$ |  | $1 \cdot 307$ (13) |
| $B(1)-F(2)$ |  | $1 \cdot 354$ (14) |
| $B(1)-F(3)$ |  | $1 \cdot 343$ (14) |
| $\mathrm{B}(1)-\mathrm{F}(4)$ |  | $1 \cdot 271$ (14) |
| (b) Bond angles |  |  |
| $\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(2)$ | 88.3 (2) | $88 \cdot 1$ (3) |
| $\mathrm{N}(5)-\mathrm{Cu}-\mathrm{N}(1)$ | 99.3 (2) | $100 \cdot 3$ (3) |
| $\mathrm{N}(5)-\mathrm{Cu}-\mathrm{N}(2)$ | 98.7 (2) | 98.8 (3) |
| $\mathrm{N}(4)-\mathrm{Cu}-\mathrm{N}(2)$ | 93.9 (2) | 91.8 (3) |
| $\mathrm{N}(4)-\mathrm{Cu}-\mathrm{N}(1)$ | 172.4 (2) | $170 \cdot 3$ (3) |
| $\mathrm{N}(4)-\mathrm{Cu}-\mathrm{N}(5)$ | 87.5 (2) | 89.2 (3) |
| $\mathrm{C}(6)-\mathrm{N}(3)-\mathrm{C}(5)$ | 127.1 (6) | 127.2 (7) |
| $\mathrm{C}(16)-\mathrm{N}(6)-\mathrm{C}(15)$ | $127 \cdot 6$ (6) | 129.4 (8) |
| $\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(2)$ | $161 \cdot 5$ (2) | $162 \cdot 6$ (3) |
| $\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(1)$ | 89.1 (2) | 88.8 (3) |
| $\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(5)$ | 99.8 (2) | 98.6 (2) |
| $\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(4)$ | 86.6 (2) | 88.4 (3) |
| $\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(2)$ | 53.9 (2) | $50 \cdot 3$ (5) |
| $\mathrm{O}(2)-\mathrm{C}(21)-\mathrm{O}(1)$ | 122.7 (7) | $125 \cdot 3$ (9) |
| $\mathrm{O}(4)-\mathrm{N}(7)-\mathrm{O}(3)$ | 123.0 (1) |  |
| $\mathrm{O}(5)-\mathrm{N}(7)-\mathrm{O}(3)$ | 116.8 (1) |  |
| $\mathrm{O}(5)-\mathrm{N}(7)-\mathrm{O}(4)$ | 120.0 (1) |  |

Discussion. The asymmetric units of (I) and (II) are made up of discrete $\left[\mathrm{Cu}(\mathrm{dpyam})_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)\right]^{+}$and $\left[\mathrm{Cu}(\text { dpyam })_{2}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]^{+}$cations, and nitrate and tetrafluoroborate anions, respectively. There is no evidence for semi-coordination of the nitrate or tetrafluoroborate anions to the Cu atoms (Procter, Hathaway \& Nicholls, 1968) for (I) and (II), respectively. There are no unusual features in either the bond lengths or the bond angles of the organic ligands present (Stephens, 1969, 1972; Ray \& Hathaway, 1978) (see Table 3). The nitrate group (Addison, Logan, Wallwork \& Garner 1971) in (I) involves reasonable $\mathrm{N}-\mathrm{O}$ distances (mean 1-211 A) and $\mathrm{O}-\mathrm{N}-\mathrm{O}$ bond angles (mean $119.9^{\circ}$ ) respectively. In the tetrafluoroborate anion of (II), the B-F bond lengths (mean $1 \cdot 319 \AA$ ) are shorter than that ( $1.37 \AA$ ) normally found in the tetrafluoroborate anion, but the bond angles were as expected (mean $109 \cdot 7^{\circ}$ ) for the tetrahedral anion. The short B-F distances are not unexpected given the high F-atom $U_{\text {eq }}$ values. The main residual electron density $\left(0.58 \mathrm{e} \AA^{-3}\right)$ is associated with the $\left[\mathrm{BF}_{4}\right]^{-}$anions, but attempts to represent the anion as disordered failed to improve the model.

The $\mathrm{CuN}_{4} \mathrm{O}_{2}$ chromophores of (I) and (II) involve a basic cis-distorted octahedral stereochemistry [Fig.

3(a)] with a marked asymmetric coordination of the $\mathrm{OXO}^{-}$anion [Fig. 3(b)] (Hathaway, 1984). The Cu atoms of the $\left[\mathrm{Cu}(\mathrm{dpyam})_{2}(\mathrm{OXO})\right]^{+}$cations are basically five-coordinate, but with the second O atom of the acetate group in (I) and the formate group in (II) occupying a sixth coordinate position at a distance greater than $2.6 \AA$, namely 2.673 (6) and 2.876 (7) $\AA$, respectively. The short $\mathrm{Cu}-\mathrm{O}$ distances of 2.030 (5) in (I) and 2.003 (6) $\AA$ in (II) agree with the typical


Fig. I. The molecular structure of $\left[\mathrm{Cu}(\mathrm{dpyam})_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)\right]\left[\mathrm{NO}_{3}\right]$ (I) and the atom-numbering scheme.


Fig. 2. The molecular structure of $\left[\mathrm{Cu}(\mathrm{dpyam})_{2}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]\left[\mathrm{BF}_{4}\right]$ (II) and the atom-numbering scheme.
value of $2.00 \AA$ (Hathaway \& Hodgson, 1972; Hathaway \& Billing, 1970). The coordination of the bidentate acetate group in (I) and the formate group in (II) is extremely asymmetric with $\Delta \mathrm{O}_{1,2}$ values of 0.643 (8) and 0.873 (9) $\AA$, respectively. The out-ofplane $\mathrm{Cu}-\mathrm{N}(1)$ and $\mathrm{Cu}-\mathrm{N}(4)$ distances are not significantly different with an average $\mathrm{Cu}-\mathrm{N}$ distance of 2.009 (8) $\AA\left[\Delta \mathrm{N}_{1,4} 0.004\right.$ (8) $\left.\AA\right]$ in (I) and 2.007 (10) $\AA\left[\Delta \mathrm{N}_{1,4} 0.016\right.$ (10) $\AA$ ] in (II). The mean in-plane $\mathrm{Cu}-\mathrm{N}$ distances [2.099 (8) in (I) and 2.093 (10) $\AA$ in (II)], are significantly longer than the mean out-of-plane $\mathrm{Cu}-\mathrm{N}$ distances, by ca $0 \cdot 1 \AA$. The in-plane $\mathrm{Cu}-\mathrm{N}$ distances are significantly different with $\Delta \mathrm{N}_{2,5}=\{[\mathrm{Cu}-\mathrm{N}(5)]-[\mathrm{Cu}-\mathrm{N}(2)]\}=$ $0 \cdot 125$ (8) in (I) and $0 \cdot 143$ (10) $\AA$ in (II).

The out-of-plane $\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(4)$ angles in (I) and (II) are nearly linear with values of 172.4 (2) and $170 \cdot 3(3)^{\circ}$, respectively. There are no unusual out-ofthe $\mathrm{N}(2), \mathrm{N}(5), \mathrm{O}(1), \mathrm{O}(2)$ plane angular distortions, with all values between 80 and $100^{\circ}$ (Table 3), but the in-plane angles do show significant differences. The $\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(2)$ angle is significantly $<180^{\circ}$ at $161 \cdot 5$ (2) and $162 \cdot 6(3)^{\circ}$ in (I) and (II), respectively. The $\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(5)$ and $\mathrm{N}(2)-\mathrm{Cu}-\mathrm{N}(5)$ angles $\left[99.8(2)\right.$ and $98.6(2)^{\circ}$, and $98.67(2)$ and $98.8(2)^{\circ}$, respectively] are almost equal but significantly $>90^{\circ}$.

In (I) and (II) the large $\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(2)$ angle is opposite the elongated $\mathrm{Cu}-\mathrm{N}(5)$ direction. This could be taken as the basal angle of the square pyramidal stereochemistry with elongation in the $\mathrm{Cu}-\mathrm{N}(5)$ direction, especially in view of the near equivalence of the $\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(5)$ and $\mathrm{N}(2)-\mathrm{Cu}-\mathrm{N}(5)$ angles (Table 3), to give a square-pyramidal octahedral (4 $+1+1^{*}$ )-type stereochemistry (Hathaway, 1973). The Cu atom is lifted out of the $\mathrm{N}(1), \mathrm{N}(2), \mathrm{N}(4)$, O (1) basal plane by $0.233 \AA$ in (I) and $0.235 \AA$ in (II), in the direction of the $\mathrm{N}(5)$ atom. The $\mathrm{N}(1)$, $\mathrm{N}(2), \mathrm{N}(4), \mathrm{O}(1)$ basal plane also has a slight trigonal distortion. Consequently this alternative square pyramidal stereochemistry for both complexes is not as regular as in $\mathrm{K}\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{5}\right]\left[\mathrm{PF}_{6}\right]_{3}$, which has almost equal basal angles of $166 \pm 1^{\circ}$ (Duggan, Ray, Hathaway, Tomlinson, Brint \& Pelin, 1980). A measure


Fig. 3. cis-distorted octahedral $\mathrm{CuN}_{4} \mathrm{O}_{2}$ chromophore; (a) symmetric $\mathrm{OXO}^{-}$coordination; (b) asymmetric $\mathrm{OXO}^{-}$coordination.
of the trigonal distortion is the $\tau$-value $[\{\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(4)\}-\{\mathrm{N}(2)-\mathrm{Cu}-\mathrm{O}(1)\}] / 60$ (Addison, Nageswara Rao, Reedijk, van Rijn \& Verschoor, 1984). This is 0.18 and 0.13 for (I) and (II), respectively, both relatively close to that of a regular square pyramidal $\mathrm{CuN}_{3} \mathrm{ON}^{\prime}$ chromophore, $\tau=0$.
The sense of the distortion of the $\mathrm{N}(1), \mathrm{N}(2), \mathrm{N}(4)$, $O$ (1) plane is related to the mechanistic pathway of the Berry twist (Berry, 1960), correlating the trigonal and square pyramidal five coordinate stereochemistries of the copper(II) ion (Ray, Hulett, Sheahan \& Hathaway, 1978; Ray \& Hathaway, 1978; Druhan \& Hathaway, 1979), and as previously reported for the $\left[\mathrm{Cu}(\text { bpy })_{2} X\right] Y$ system (Harrison, Hathaway \& Kennedy, 1979; Walsh, Walsh, Murphy \& Hathaway, 1981; Fitzgerald \& Hathaway, 1981). However, the structures of both (I) and (II) are best considered to be intermediate between a distorted square-based pyramidal five-coordinate geometry, plus an additional long bonded sixth $O$ (2) ligand, and an asymmetric $c i s$-distorted octahedral geometry, both giving a $\left(4+1+1^{*}\right)$ type coordination (Fitzgerald \& Hathaway, 1981).

The individual pyridine rings in the dpyam ligands in both complexes are planar, to within $0.022 \AA$. The dpyam ligands as a whole, however, are nonplanar and are slightly twisted about the amine $\mathrm{N}-\mathrm{C}$ bonds. The pyridine rings involve dihedral angles of 27.90 and $27.41^{\circ}$ in (I) and 26.95 and $23.66^{\circ}$ in (II) for the ligands defined by the $\mathrm{N}(1) / \mathrm{N}(2)$ and the $\mathrm{N}(4) / \mathrm{N}(5)$ atoms, respectively. The dpyam bite angles are 88.3 (2) and $87.5(2)^{\circ}$ in (I) and 88.1 (3) and $89 \cdot 2(3)^{\circ}$ in (II) for the $\mathrm{N}(1) / \mathrm{N}(2)$ and $\mathrm{N}(4) / \mathrm{N}(5)$ ligands, respectively. The mean planes of the dpyam ligands are inclined to each other at 112.16 in (I) and $116 \cdot 14^{\circ}$ in (II).
The acetate group in (I) is planar and reasonably coplanar with the $\mathrm{Cu}, \mathrm{N}(2), \mathrm{N}(5)$ plane and, due to the $\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(2)$ bite angle of $53.9(2)^{\circ}, \mathrm{O}(2)$ lies well off the $z$ axis of the $\mathrm{CuN}_{3} \mathrm{ON}^{\prime}$ square pyramid, at a distance $>2.6 \AA$, but close enough to be involved in off-the-z-axis bonding to the $\mathrm{Cu}^{2+}$ ion (Hathaway, 1973). The mean C-O distance of the acetate ligand, $1 \cdot 26$ (2) $\AA$, agrees with the reported value, $1-26 \AA$ (Oldham, 1968; Hathaway, Ray, Kennedy, O'Brien \& Murphy, 1980; Wells, 1984). The separate $\mathrm{C}-\mathrm{O}$ distances of $1-236$ (8) and 1.278 (8) $\AA$ are just significantly different, despite the marked asymmetry in the $\mathrm{Cu}-\mathrm{O}(1)$ and $\mathrm{Cu}-\mathrm{O}(2)$ distances. The $\mathrm{C}-\mathrm{O}$ bond lengths of the formate ligand in (II) are not significantly different at $1 \cdot 263$ (10) for $\mathrm{O}(1)-\mathrm{C}(21)$ and 1.243 (11) $\AA$ for $\mathrm{O}(2)-\mathrm{C}(21)$. The $\mathrm{O}(1)-\mathrm{C}(21)-\mathrm{O}(2)$ angle of $125.3(9)^{\circ}$, is larger than the angle of $120^{\circ}$ characteristic of a trigonal planar anion, as observed previously (Fitzgerald et al., 1981) and subtends an angle of $50 \cdot 3(5)^{\circ}$ at the Cu atom.

The plot of the $\Delta \mathrm{O}$ and $\Delta \mathrm{N}$ differences for a series of $\left[\mathrm{Cu}(\text { chelate })_{2}(\mathrm{OXO})\right] Y$ complexes (Simmons et al., 1987, Fig. 4), where chelate $=$ bpy and phen, has been used to suggest a structural pathway for these fluxional $\mathrm{CuN}_{4} \mathrm{O}_{2}$ chromophores. The $\Delta \mathrm{O}$ and $\Delta \mathrm{N}$ values of (I) and (II) lie in the same range, $0-0.9 \AA$, and suggest that the dpyam complexes also represent points on a corresponding structural pathway (Hathaway, 1984) and also involve fluxional $\mathrm{CuN}_{4} \mathrm{O}_{2}$ stereochemistries. In the case of (II), this complex lies near the upper limit of $0.8 \AA$ for the pathway (Fitzgerald et al., 1981). Some evidence for this fluxional description of the $\mathrm{CuN}_{4} \mathrm{O}_{2}$ chromophore stereochemstry of (I) and (II) can be obtained from the plots of the thermal parameters, Figs. 4(a) and 4(b) (Johnson, 1971). For the $\mathrm{Cu}, \mathrm{N}(2), \mathrm{N}(5)$ and $\mathrm{O}(1)$ atoms, the thermal parameters are reasonably spherical. In the case of the $O(2)$ atoms, the thermal parameters are clearly ellipsoidal, with the major axis of the ellipsoid orientated approximately parallel to the $\mathrm{Cu}-\mathrm{O}(2)$ directions for both (I) and (II) (see Fig. 2 of Simmons et al., 1987).
The electronic spectra of (I) and (II), recorded as previously described (Hathaway \& Billing, 1970), involve twin peaks of comparable intensity at 10000 and 15200 , and 10500 and $15600 \mathrm{~cm}^{-1}$, respectively. The spectra differ slightly in the relative energies involved, with the bands of (II) ca $500 \mathrm{~cm}^{-1}$ higher in energy than those in (I). The splitting $\Delta E$ of approximately $5100 \mathrm{~cm}^{-1}$ is significantly greater than that of the corresponding bpy (Hathaway et al., 1980; Fitzgerald \& Hathaway, 1981) and phen (Escobar \& Wittke, 1983; Fitzgerald et al., 1985) complexes, of $\Delta E=4200$ and $4500 \mathrm{~cm}^{-1}$, respectively, and may reflect the greater flexibility of the dpyam ligand.

The authors acknowledge the award of an EOLAS postgraduate research grant (to MEK), UCC senior studentships (to SA, MEK and PA) and a senior demonstratorship (to ST). Dr M. McPartlin and Mr A. Bashall (Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway Road, London) are thanked for data collection, the Computer Bureau (UCC) for computing

(a)

(b)

Fig. 4. ORTEP thermal ellipsoid plots; $50 \%$ probability ellipsoids for the in-plane $\mathrm{CuN}_{2} \mathrm{O}_{2}$ atoms of (a) [Cu(dpyam) $)_{2}$ $\left.\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)\right]\left[\mathrm{NO}_{3}\right]$ and $(b)\left[\mathrm{Cu}(\text { dpyam })_{2}\left(\mathrm{O}_{2} \mathrm{CH}\right)\right]\left[\mathrm{BF}_{4}\right]$.
facilities, Professor G. M. Sheldrick, Drs P. Roberts, S. Motherwell, K. Henrick and K. Davies, for the use of their programs and the Microanalysis Section (UCC) for analysis.

## References

Addison, A. W., Nageswara Rao, t., Reedijk, J., van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1340-1356.
Adison, C. C., Logan, N., Wallwork, S. C. \& Garner C. D. (1971). Q. Rev. Chem. Soc. 25, 289-322.

Berry, S. (1960). J. Chem. Phys. 32, 933-935.
Cromer, D. T. \& Waber, J. T. (1974). International Tables for $X$-ray Crystallography, Vol. IV, pp. 71, 148. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Davies, K. (1980). CHEM-X. Molecular graphics program, developed and distributed by Chemical Design Ltd, Oxford.
Druhan, G. \& Hathaway, B. J. (1979). Acta Cryst. B35, 344-349.
Duggan, M., Ray, N., Hathaway, B. J., Tomlinson, G., Brint, P. \& Pelin, K. (1980). J. Chem. Soc. Dalton Trans. pp. 13421347.

Escobar, C. \& Wittike, O. (1983). Acta Cryst. C39, 1643-1646.
Fitzgerald, W. \& Hathaway, B. J. (1981). J. Chem. Soc. Dalton Trans. pp. 567-574.
Fitzgerald, W., Hathaway, B. J. \& Simmons, C. J. (1985). J. Chem. Soc. Dalton Trans. pp. 141-149.
Fitzgerald, W., Murphy, B., Tyagi, S., Walsh, A., Walsh, B. \& Hathaway, B. J. (1981). J. Chem. Soc. Dalton Trans. pp. 2271-2279.
Harrison, W. D., Hathaway, b. J. \& Kennedy, D. (1979). Acta Cryst. B35, 2301-2306.
Hathaway, B. J. (1973). Struct. Bonding (Berlin), 14, 49-67.

Hathaway, B. J. (1984). Struct. Bonding (Berlin), 57, 55-118
hathaway, B. J. \& Billing, D. E. (1970). Coord. Chem. Rev. 5, 143-207.
Hathaway, B. J. \& Hodgson, P. G. J. (1972). J. Inorg. Nucl. Chem. 35, 4071-4081.
Hathaway, B. J., Ray, N., Kennedy, D., O’Brien, N. \& Murphy, B. (1980). Acta Cryst. B36, 1371-1377.
Henrick, K. (1980). PUBTAB. Program to prepare and print crystallographic tables for publication. Polytechnic of North London, England.
Johnson, C. K. (1971). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Oldham, C. (1968). Prog. Inorg. Chem. 10, 223-258.
Procter, I. M., Hathaway, B. J., Billing, D. E., Dudley, R. \& Nicholls, P. (1969). J. Chem. Soc. A, pp. 1192-1197.
Procter, I. M., Hathaway, B. J. \& Nicholls, P. (1968). J. Chem. Soc. A, pp. 1678-1684.
Ray, N. J. \& Hathaway, B. J. (1978). Acta Cryst. B34, 3224 3229.

Ray, N. J., Hulett, L., Sheahan, R. \& Hathaway, B. J. (1978). Inorg. Nucl. Chem. Lett. 14, 305-308.
Roberts, P. \& Sheldrick, G. M. (1979). XANADU. Program for crystallographic calculations. Univ. of Cambridge, England.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
Simmons, C. J., Hathaway, B. J., Amornjarusiri, K., SantarSiero, B. D. \& Clearfield, A. (1987). J. Am. Chem. Soc. 109, 1947-1958.
Stephens, F. S. (1969). J. Chem. Soc. A, pp. 883-890, 2081-2087.
Stephens, F. S. (1972). J. Chem. Soc. Dalton Trans. pp. 13501353.

Walsh, A., Walsh, B., Murphy, B. \& Hathaway, B. J. (1981). Acta Cryst. B37, 1512-1520.
Wells, A. R. (1984). Structural Inorganic Chemistry, 5th edition. Oxford: Clarendon Press.

# Structure of Bis(1,10-phenanthroline)copper(II) Bis(hexafluorophosphate) 

By Kitti Amournjarusiri and Brian J. Hathaway*<br>Chemistry Department, University College, Cork, Ireland

(Received 7 June 1990; accepted 17 December 1990)


#### Abstract

Cu}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}, \quad\) (I), $\quad M_{r}=713 \cdot 89$, monoclinic, $C 2 / c, a=17.594$ (4), $b=12 \cdot 603$ (3), $c=$ 12.539 (3) $\AA, \beta=111.90(2)^{\circ}, V=2579.72 \AA^{3}, Z=4$, $D_{m}($ flotation $)=1.810$ (6), $\quad D_{x}=1.83 \mathrm{Mg} \mathrm{m}^{-3}$, $\lambda($ Mo $K \alpha)=0.71069 \AA, \mu=1.017 \mathrm{~mm}^{-1}, F(000)=$ 1420, room temperature, $R=0.049$ for 1723 unique observed reflections. The crystal contains $\left[\mathrm{Cu}(\mathrm{phen})_{2}\right]^{2+}$ cations (phen $=1,10-o$-phenanthroline) and $\left[\mathrm{PF}_{6}\right]^{-}$anions. The cation involves a compressed tetrahedral $\mathrm{CuN}_{4}$ chromophore and lies on a


[^2]crystallographic twofold axis of symmetry. The two independent anions are also in special positions of twofold symmetry, with near octahedral stereochemistry, and with the shortest $\mathrm{Cu} \cdots \mathrm{F}$ distances $>2.75 \AA$, they are too long even for weak semicoordination.

Introduction. The compressed tetrahedral $\mathrm{CuN}_{4}$ chromophore is of only limited occurrence in the coordination chemistry of the $\mathrm{Cu}^{\mathrm{II}}$ ion involving simple neutral chelate N ligands (Hathaway \& Billing, 1970; Hathaway, 1987). It was first © 1991 International Union of Crystallography


[^0]:    * To whom correspondence should be addressed.

[^1]:    * Lists of structure factors, anisotropic thermal parameters, full bond lengths and bond angles, mean-plane data and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53846 (37 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^2]:    * Author to whom correspondence should be addressed.

